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1 — VECTORS

1.1 Vectors in the plane

Definition 1.1.1 A scalar is a quantity that has magnitude but no direction.
A vector is usually described as a quantity that has both magnitude and direction.

Geometrically, a vector is represented by a directed line segment that is an arrow and is written either
as a boldface symbol v or −→v or

−→
AB for instance weight, velocity, frictional force are vector quantity.

The arrow points in the direction of the vector, and the length of the arrow gives the magnitude of the
vector.

Notations and Terminologies

A vector whose initial point is A and whose terminal point is B is given by
−→
AB and the magnitude (or

length) of vector
−→
AB is denoted by

−−−→
‖AB‖.

Figure 1.1a gives an aerial view of a tugboat trying to free a cruise liner that has run aground in
shallow waters. The magnitude and direction of the force exerted by the tugboat are represented by
the vector shown in the figure.
In Figure 1.1b the vectors (arrows) give the magnitude and direction of blood cells flowing through

Figure 1.1:

an artery. Observe that the lengths of the vectors vary; this reflects the fact that the blood cells near
the central axis have a greater velocity than those near the walls of the artery.

Two vectors, v and w , that have the same magnitude and direction are said to be equal, written



2 VECTORS

v = w. Thus, the vectors v =
−→
AB and w =

−→
CD. Graphically, this means that the arrows representing−→

AB and
−→
CD are parallel, have the same length and are pointing in the same direction.

Figure 1.2: v is the directed line segment from A
to B.

Figure 1.3: v and w have the same length and
direction.

1.2 Addition and scalar multiplication

Consider the vector
−→
AB as representing the displacement of a particle from the point A to the point

B, notice that the end result of displacing the particle from A to B (corresponding to the vector
−→
AB),

followed by displacing the particle from B to C (corresponding to the vector
−→
BC) is the same as

displacing the particle directly from A to C, which corresponds to the vector
−→
AC (called the resultant

vector). We call AC the sum of AB and BC and write−→
AC =

−→
AB+

−→
BC.

To add two vectors, we locate the initial point of one at the terminal point of the other and complete
the parallelogram, as indicated in Figure 1.5 . The vector lying along the diagonal, with initial point at
A and terminal point at C is the sum

−→
AC =

−→
AB+

−→
AD.

Figure 1.4: Resultant vector Figure 1.5: Sum of two vectors.

A vector can be multiplied by a scalar. If c 6= 0 is a scalar and v is a vector, then the scalar multiple
of c and v is a vector cv. The magnitude of cv is |c|‖v‖
Two nonzero vectors are parallel if they are scalar multiples of one another. In figure 1.5 vector−→
AD and

−→
BC are parallel.

Figure 1.6: Scalar multiples of v
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1.2 Addition and scalar multiplication 3

The difference of two vectors v and w, written v−w, is defined by
v−w = v+(−w)

To describe this operation geometrically, consider once again the two vectors v and w of Figure 1.7,
which are reproduced in Figure 1.8. If we translate w , reverse it to obtain −w, and then use the
parallelogram law to add v to −w , we obtain v−w , as shown in Figure 1.8

Figure 1.7: The vectors v and w Figure 1.8: The vector v−w.

Vectors in the Coordinate Plane
The vector v with initial point at the origin and terminal point P(v1,v2) is called the position vector
of the point P(v1,v2) and is denoted by 〈v1, v2〉.

Definition 1.2.1 A vector in the plane is an ordered pair v = 〈v1, v2〉 of real numbers, v1 and v2 ,
called the scalar components of v. The zero vector is 0 = 〈0, 0〉.

Definition 1.2.2 Given the points P1(x1,y1) and P2(x2,y2) , the vector
−−→
P1P2 is represented by the

position vector

v =
−−→
P1P2 = 〈x2− x1, y2− y1〉 (1.1)

� Example 1.1 Find the vector v with initial point A(−3,−2) and terminal point B(2,1) . �

Solution: Using Equation 1.1, we find the vector v to be

v = 〈2− (−3), 1− (−1)〉= 〈5, 2〉

� Example 1.2 Let v be a vector with initial point A(0,0) and terminal point B(3,2) , and let u be
a vector with initial point C(1,3) and terminal point D(4,5). Show that v = u. �

Solution: To show that v = u, we need to show that both vectors have the same length and direction.
Using the distance formula, we find

length of
−→
AB =

√
(3−0)2 +(2−0)2 =

√
13

and

length of
−→
CD =

√
(4−1)2 +(5−3)2 =

√
13

so v and u have the same length. Next, we find

slope of
−→
AB =

2−0
3−0

=
2
3

and

slope of
−→
CD =

5−3
4−1

=
2
3

so v and u have the same direction. This proves that v = u

Zena S. @ ASTU, 2017 Applied Mathematics I



4 VECTORS

Length of a Vector

Definition 1.2.3 The length or magnitude of v = 〈v1, v2〉 is

‖v‖=
√

v2
1 + v2

2 (1.2)

Vector Addition in the Coordinate Plane

Parallelogram Law for Vector Addition
If u = 〈u1, u2〉 and v = 〈v1, v2〉 , then

u+v = 〈u1, u2〉+ 〈v1, v2〉= 〈u1 + v1, u2 + v2〉

� Example 1.3 If u = 〈3, −2〉 and v = 〈−1, 3〉 , then
u+v = 〈3+(−1), −2+3〉= 〈2, 1〉 �

� Example 1.4 Suppose ship A is cursing in the easterly direction at a speed of 15km/hr while
ship B is speeding at 30km/hr in the north east direction. Assuming that both ships started from the
same place at the same time, find the rate at which the two ships are separating. �

solution: Taking the x-axis the easterly direction and y-axis the northerly direction see figure 1.9, we
see that the velocity of the ship A is represented by the vector A = 15 i and the velocity of the ship B
by the vector B = 30

(
cos

π

4
i+ sin

π

4
j
)

Figure 1.9: Rate of displacement between two
ships

The displacement of the ship B relative to the
ship A is represented by the vector D = B−A.
Hence the rate at which the ships separating is
equal to the magnitude of the displacement vector
D. Thus,

D = B−A = 15(
√

2−1) i+15
√

2 j

=⇒ ‖D‖ = 15
√
(
√

2−1)2 +2 = 22.1km/hr

Scalar Multiplication
If u = 〈u1, u2〉 and c is a scalar, then,

cu = 〈cu1, cu2〉

Properties of Vectors

Theorem 1.2.1 — Rules for Vector Addition and Scalar Multiplication. Suppose that u, v and w
are vectors and that c and d are scalars. Then

1. u+v = v+u
2. (u+v)+w = u+(v+w)
3. u+0 = 0+u = u
4. u+(−u) = 0

5. c(u+v) = cu+ cv
6. c(du) = (cd)u
7. (c+d)u = cu+du
8. 1u = u
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1.2 Addition and scalar multiplication 5

Unit Vectors
A unit vector is a vector of length 1. Unit vectors are primarily used as indicators of direction. For
example, if w is a nonzero vector, then the vector

u =
w
‖w‖

is a unit vector having the same direction as w. Furthermore, by writing w in the form

w = ‖w‖
(

w
‖w‖

)
= ‖w‖u

the two properties of magnitude and direction that define a vector are clearly displayed.

� Example 1.5 Find a unit vector in the same direction as v = 〈4,3〉 �

Solution: ‖v‖=
√

42 +32 =
√

25 = 5
The unit vector in the same direction as v = 〈4,3〉 is then

u =
v
‖v‖

=
〈4,3〉

5
=

〈
4
5
,
3
5

〉
Standard Basis Vectors
There are two unit vectors in the coordinate plane that are singled out for a special role. They are the
vectors i and j defined by

i = 〈1,0〉 and j = 〈0,1〉
The vector i points in the positive x-direction, whereas the vector j points in the positive y-direction.
Let u = 〈u1, u2〉 be a vector in the coordinate plane. Then

u = 〈u1, u2〉= 〈u1, 0〉+ 〈0, u2〉
= u1 〈1, 0〉+u2 〈0, 1〉
= u1 i+u2 j

This shows that any vector in the plane can be expressed in terms of the vectors i and j. For this
reason the vectors i and j are referred to as standard basis vectors.

� Example 1.6 Let u = −4 i+2 j, v = 2 i+ j, and w = 2 i+3 j. Find the scalar m and n such
that w = mu+nv �

Solution: We have

mu+nv = m(−4 i+2 j)+n(2 i+ j)

= (−4m+2n) i+(2m+n) j = 2 i+3 j

Equating the corresponding components, we obtain
−4m+2n = 2 and 2m+n = 3

Solving for m and n, we get m =
1
2

and n = 2

� Example 1.7 At a certain point during a jump, there are two principal forces acting on a sky
diver: gravity exerting a force of 180 pounds straight down and air resistance exerting a force of
180 pounds up and 30 pounds to the right. What is the net force acting on the sky diver? �

Solution: We write the gravity force vector as g = 〈0,−180〉 and the air resistance force vector
as r = 〈30,180〉. The net force on the sky diver is the sum of the two forces, g+ r = 〈30,0〉. We
illustrate the forces in Figure 1.10. Notice that at this point, the vertical forces are balanced, producing
a “free-fall” vertically, so that the sky diver is neither accelerating nor decelerating vertically. The net
force is purely horizontal, combating the horizontal motion of the sky diver after jumping from the
plane.
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6 VECTORS

Figure 1.10: Forces on a sky diver.
Figure 1.11: Forces on an airplane.

� Example 1.8 An airplane has an airspeed of 400 mph. Suppose that the wind velocity is given
by the vector w = 〈20,30〉. In what direction should the airplane head in order to fly due west i.e.,
in the direction of the unit vector −i = 〈−1,0〉? �

Solution: We illustrate the velocity vectors for the airplane and the wind in Figure 1.11. We let the
airplane’s velocity vector be v = 〈x,y〉. The effective velocity of the plane is then v+w, which we set
equal to 〈c,0〉, for some negative constant c. Since

v+w = 〈x+20,y+30〉= 〈c,0〉
we must have x+20= c and y+30= 0, so that y=−30. Further, since the plane’s airspeed is 400 mph
we must have 400= ‖v‖=

√
x2 + y2 =

√
x2 +900. Squaring this gives us x2+900= 160,000, so that

x =−159,100. (We take the negative square root so that the plane heads westward.) Consequently, the
plane should head in the direction of v = 〈−159,100,−30〉 which points left and down, or southwest,
at an angle of tan−1(30/159,100)≈ 4o below due west.

� Example 1.9 A body weighing 100 kg is suspended from two ropes as shown in figure 1.12.
Find the tension in the ropes. �

Solution: Let the tension in the ropes be denoted by F1 = a1i+a2 j and F2 = b1 i+b2 j. The weight
of the body is represented by the vector W =−100 j. Since the system is in equilibrium the sum of
all the forces must be equal to zero. Thus,

F1 +F2 +W = (a1 +b1) i+(a2 +b2−100) j = 0. This implies
a1 +b1 = 0, a2 +b2−100 = 0

Figure 1.12: Tension in ropes from which a weight is suspended.
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1.3 Vectors in space 7

Hence, a1 = −b1 and a2 +b2 = 100. By symmetry, we know that ‖F1‖ = ‖F2‖, which implies
that a2 = b2. Therefore, a2 = b2 = 50. Since a1 = ‖F1‖cos45 and a2 = ‖F2‖sin45, it follows that
‖F1‖ = ‖F2‖ = 50

√
2 and a1 = −b1 = 50. Thus, F1 = 50(i+ j) and F2 = 50(−i+ j). Notice that

F1 +F2 = 100 j

1.3 Vectors in space

A vector in 3-space is an ordered triple of real numbers
a = 〈a1,a2,a3〉,

where a1,a2, and a3 are the components of the vector. In particular, the position vector of a point
P(x1,y1,z1) is the vector We represent the vector 〈a1,a2,a3〉 as an arrow from the origin (0,0,0) to
the point (a1,a2,a3) in 3-space. In this way, the direction indicated by the arrow, as viewed from the
origin, gives the direction of the vector.

Definition 1.3.1 If a = 〈a1,a2,a3〉 and b = 〈b1,b2,b3〉 are vectors in 3-space and c is a scalar, then
1. a = b if and only if a1 = b1, a2 = b2, a3 = b3
2. a+b = 〈a1 +b1,a2 +b2,a3 +b3〉
3. ca = 〈ca1,ca2,ca3〉
4. ‖a‖=

√
a2

1 +a2
2 +a2

3 (Length or norm of a vector)

The vector with initial point P1(x1,y1,z1) and terminal point P2(x2,y2,z2) is
−−→
P1P2 = 〈x2− x1, y2− y1, z2− z1〉

Thus, we can find the components of a vector by subtracting the respective coordinates of its
initial point from the coordinates of its terminal point, as illustrated in Figure 1.13. The vectors

−−→
OP1

and
−−→
OP2 are the position vectors of the point P1(x1,y1,z1) and P2(x2,y2,z2). As a natural extension of

the definition of vector subtraction in 2-space into 3-space, we have
−−→
P1P2 =

−−→
OP2−

−−→
OP1 = 〈x2, y2, z2〉−〈x1, y1, z1〉= 〈x2− x1, y2− y1, z2− z1〉

Figure 1.13:

By considering the parallelogram OPP2P1 in Figure 1.13, you can convince yourself that
−−→
P1P2 is

represented by the position vector
−→
OP of the point (x2− x1,y2− y1,z2− z1).

� Example 1.10 Let P(2,−1,2) and Q(1,4,5) be two points in 3-space.
(a) Find the vector

−→
PQ.

(b) Find ‖−→PQ‖.
(c) Find a unit vector having the same direction as

−→
PQ

�
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Solution:
(a)
−→
PQ = 〈1−2, 4− (−1), 5−2〉= 〈−1, 5, 3〉

(b) ‖−→PQ‖=
√

(−1)2 +52 +32 =
√

35
(c) Using the results of parts (a) and (b), we obtain the unit vector

u =

−→
PQ

‖−→PQ‖
=
〈−1, 5, 3〉√

35
=

〈
− 1√

35
,

5√
35

,
3√
35

〉
Standard Basis Vectors in Space
In three-dimensional space, the 3-space vectors

i = 〈1,0,0〉 , j = 〈0,1,0〉 and k = 〈0,0,1〉
form a basis for the space, in the sense that any vector in the space can be expressed in terms of these
vectors. If a = 〈a1, a2, a3〉 be a vector in space. Then

a = 〈a1, a2, a3〉= 〈a1, 0, 0〉+ 〈0, a2, 0〉+ 〈0, 0, a3〉
= a1 〈1, 0, 0〉+a2 〈0, 1,0〉+a3 〈0, 0,1〉
= a1 i+a2 j+a3 k

1.4 The Scalar (Dot) Product

Definition 1.4.1 Let a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 be any two vector in space. Then the
dot product of a and b is the number a.b defined by

a.b = a1b1 +a2b2 +a3b3

� Example 1.11 Find the dot product of each pair of vectors:
1. v = 〈2,−3〉 and u = 〈3,1〉
2. v = 〈1,−2,4〉 and u = 〈1,1,0〉

�

Properties of the Dot Product
Let u,v, and w be vectors in 2- or 3-space and let c be a scalar. Then

1. u.v = v.u
2. u.(v+w) = u.v+u.w
3. (cu).v = c(u.v) = u.(cv)
4. u.u = ‖u‖2

5. 0.u = 0

The Angle Between Two Vectors
The angle between two nonzero vectors is the angle θ between their corresponding position vectors,
where 0≤ θ ≤ π .

R If two vectors are parallel, then θ = 0 or θ = π

The angle between the zero vector and another vector is not defined.

Theorem 1.4.1 Let θ be the angle between two nonzero vectors a and b . Then

cosθ =
a.b
‖a‖‖b‖

Proof. Consider the triangle determined by the vectors a, b and a−b as shown in Figure 1.14. Using
the law of cosines, we have

‖a−b‖2 = ‖a‖2 +‖b‖2−2‖a‖‖b‖cosθ
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Figure 1.14: The angle between a and b is θ .

But

‖a−b‖2 = (a−b).(a−b)
= a.a−a.b−b.a+b.b
= ‖a‖2−2a.b+‖b‖2

so we have

‖a‖2−2a.b+‖b‖2 = ‖a‖2 +‖b‖2−2‖a‖‖b‖cosθ

=⇒ −2a.b = −2‖a‖‖b‖cosθ

=⇒ cosθ =
a.b
‖a‖‖b‖

�

� Example 1.12 If the vectors a and b have lengths 4 and 6, and the angle between them is
π

3
,

find a.b. �

Solution: We have
a.b = ‖a‖‖b‖cosθ = 4.6.cos

π

3
= 24.

1
2
= 12

� Example 1.13 Find the angle between the vectors a = 〈2,−1,−2〉 and b = 〈1,2,2〉 �

Solution: We have
‖a‖=

√
22 +(−1)2 +(−2)2 = 3, ‖b‖=

√
12 +22 +22 = 3 and a.b = 2(1)+(−1)2+(−2)2 =

−4

Hence, cosθ =
a.b
‖a‖‖b‖

=
−4
9

=⇒ θ = cos−1
(
−4
9

)
=

Theorem 1.4.2 Two vectors a and b are orthogonal if and only if a.b = 0.

� Example 1.14 Determine whether the following pairs of vectors are orthogonal:
(a) a =−i+2 j+5k, b = 3 i+4 j− k
(b) u = i− j+2k, v = 2 i− j+ k

�

Solution:
(a) Since a.b = (−1)3+2(4)+5(−1) = 0. So, a and b are orthogonal.
(b) Since u.v = 1(2)+(−1)(−1)+2(1) = 5 6= 0. So, u and v are not orthogonal.
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10 VECTORS

Theorem 1.4.3 — Cauchy-Schwartz Inequality. For any vectors a and b,
|a.b| ≤ ‖a‖‖b‖

Theorem 1.4.4 — The Triangle Inequality. For any vectors a and b,
‖a+b‖ ≤ ‖a‖+‖b‖

Direction Cosines

We can describe the direction of a nonzero vec-
tor a by giving the angles α, β , and γ that a
makes with the positive x -, y -, and z -axes,
respectively. (See Figure 1.15.) These an-
gles are called the direction angles of a. The
cosines of these angles, cosα , cosβ , and cosγ ,
are called the direction cosines of the vector a.

Figure 1.15: The direction angles of a vector

Let a = a1 i+a2 j+a3 k be a nonzero vector in 3-space. Then
a. i = (a1 i+a2 j+a3 k).i = a1

So,

cosα =
a.i
‖a‖‖i‖

=
a1

‖a‖
Similarly,

cosβ =
a. j
‖a‖‖ j‖

=
a2

‖a‖
, and cosγ =

a.k
‖a‖‖k‖

=
a3

‖a‖
By squaring and adding the three direction cosines, we obtain

cos2
α + cos2

β + cos2
γ =

a2
1
‖a‖2 +

a2
2
‖a‖2 +

a2
3

‖a‖2 =
‖a‖2

‖a‖2 = 1

R
1. If a = a1 i+a2 j+a3 k is nonzero, then the unit vector having the same direction as a is

u =
a
‖a‖

=
a1

‖a‖
i+

a2

‖a‖
j+

a3

‖a‖
k

= (cosα)i+(cosβ )j+(cosγ)k (1.3)
This shows that the direction cosines of a are the components of the unit vector in the
direction of a.

2. From Equation (1.3) we see that
a = ‖a‖ [(cosα)i+(cosβ )j+(cosγ)k]

� Example 1.15 Find the direction angles of the vector a = 2 i+ j+2k �

Solution: We have ‖a‖=
√

22 +12 +22 = 3. So,

cosα =
2
3
, cosβ =

1
3
, and cosγ =

2
3

Therefore,

α = cos−1
(

2
3

)
≈ 48.19o, β = cos−1

(
1
3

)
≈ 70.53o, and γ = cos−1

(
2
3

)
≈ 48.19o
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1.5 Vector Projections and Components

Figure 1.16a depicts a child pulling a sled with a constant force represented by the vector F. The force
F can be expressed as the sum of two forces: a horizontal component F1 and a vertical component F2,
as shown in Figure 1.16b.

Figure 1.16:

Observe that F1 acts in the direction of motion, whereas F2 acts in a direction perpendicular to the
direction of motion.

More generally, we are interested in the component of one vector b in the direction of another
nonzero vector a. The vector that is obtained by projecting b onto the line containing the vector a is
called the vector projection of b onto a (also called the vector component of b along a) and denoted by

projba
(See Figure 1.17.) The scalar projection of b onto a (also called the scalar component of b along a) is

Figure 1.17: projba : ( ~PQ) is the vector projection
of b onto a. Figure 1.18: compb

a = ‖b‖cosθ .

the length of projba if the projection has the same direction as a and the negative of the length of projba
if the projection has the opposite direction. We denote this scalar projection by

compb
a

Since
cosθ =

a.b
‖a‖‖b‖

we can write

‖b‖cosθ =
|b‖(a.b)
‖a‖‖b‖

=
a.b
‖a‖

Therefore, the component of b along a is

compb
a =

b.a
‖a‖

The vector projection of b along a is the component of b along a times the direction of a.

projba =

(
b.a
‖a‖

)
a
‖a‖

=

(
a.b
‖a‖2

)
a
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Figure 1.19: projba points in the same direction as a if θ is acute and points in the opposite direction as
a if θ is obtuse.

� Example 1.16 Let a = 2 i+3 j−4k and b = 3 i−2 j+ k. Find
(a) the component of b along a (b) projba (c) projab �

Solution: (a) The scalar component of b along a is

compb
a =

a.b
‖a‖

=
2(3)+3(−2)+(−4)1√

22 +32 +(−4)2
=− 4√

29
(b) The projection of vector b along a is

projba =

(
a.b
‖a‖2

)
a =− 4

29
(2 i+3 j−4k) =− 8

29
i− 12

29
j+

16
29

k

(c) The projection of vector a along b is

projab =

(
a.b
‖b‖2

)
b =− 4

32 +(−2)2 +12 (3 i−2 j+ k) =−6
7

i+
4
7

j+−2
7

k

Using vector projections, we can express any vec-
tor b as the sum of a vector parallel to a vector
a and a vector perpendicular to a. In fact, from
Figure 1.20 we see that.

b = projba +
(
b−projba

)
=

(
a.b
‖a‖2

)
a+
[

b−
(

a.b
‖a‖2

)
a
]

Figure 1.20: The direction angles of a vector

� Example 1.17 Write b = 3 i− j+2k as the sum of a vector parallel to a = 2 i− j+k and a vector
perpendicular to a. �

Solution: We have
a.b = 2(3)+(−1)(−1)+1(2) = 9 and ‖a‖2 = a.a = 22+(−1)2+12 = 6

Hence,

b =

(
a.b
‖a‖2

)
a+
[

b−
(

a.b
‖a‖2

)
a
]

=
9
6
(2 i− j+ k)+

[
(3 i− j+2k)− 9

6
(2 i− j+ k)

]
=

(
3 i− 3

2
j+

3
2

k
)
+

(
1
2

j+
1
2

k
)

Therefor, the vector
(

3 i− 3
2

j+
3
2

k
)

is parallel to a and the vector
(

1
2

j+
1
2

k
)

is perpendicular a.
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1.5 Vector Projections and Components 13

Work
One application of vector projections lies in the computation of the work done by a force.
If a constant force F moves an object from point P to point Q, we refer to the vector d =

−→
PQ as the

displacement vector. The work done is the product of the component of F along d and the distance:

W = compF
d ‖d‖

=
F.d
‖d‖
‖d‖= F.d

� Example 1.18 A force F = 2 i+3 j+4k moves a particle along the line segment from the point
P(1,2,1) to the point Q(3,6,5). Find the work done by the force if ‖F‖ is measured in newtons
and ‖D‖ is measured in meters. �

solution: The displacement vector is ‖d‖=−→PQ = 2 i+4 j+4k. Therefore, the work done by F is
W = F.d = 32 joules.

� Example 1.19 A wagon is pulled a distance of 100 m along a horizontal path by a constant force
of 70 N. The handle of the wagon is held at an angle of 30o above the horizontal. Find the work
done by the force. �

Solution: W = F.d = ‖F‖‖d‖cosθ = 70)(100)(

√
3

2
) = 3500

√
3 = 6062.18 J

Exercise 1.1 1. Determine whether the following vectors in R3 are parallel or not
(a)
−→
A = 2 i−3 j and

−→
B =−3 i+2 j+ k

(b)
−→
A = 2 i+4 jk and

−→
B =−i−2 j+

1
2

k

2. Find the value(s) of x such that the vector
−→
A = (1,4,3) and

−→
B = (x,−1,2) are orthogonal.

3. Find the angle between
−→
A =<−1,−1,1 > and

−→
B =<

√
6,1,1 >

4. Find any unit vectors that are perpendicular to the vector
−→
A =< 3,4 >

5. If the angle between the vectors
−→
A and

−→
B is θ =

π

6
with each other and ‖−→A ‖ =

√
3 and

‖−→B ‖= 1, then calculate the cosine the angle between the vectors
−→
A +
−→
B and

−→
A −−→B .

6. Find the projection of
−→
A =<−1,3,1 > on to

−→
B =< 2,4,3 >

7. Suppose −→a and
−→
b are orthogonal, show that pro ja

b = 0.
8. Suppose −→a and

−→
b are parallel, show that pro jb

a = b.
9. Express the vector

−→
b = 2 i+ j− 3k as the sum of a vector parallel to −→a = 3 i− j and a

vector orthogonal to −→a
10. Find the work done by a force F = 5k in moving an object along the line from the origin to

the point P(1,1,1) distance in meters.
�
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14 VECTORS

1.6 The Cross Product
Definition 1.6.1 Let a = a1 i+ a2 j+ a3 k and b = b1 i+ b2 j+ b3 k be any two vectors in space.
Then the cross product of a and b is the vector

a×b =

∣∣∣∣∣∣
i j k

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣= (a2b3−a3b2)i+(a3b1−a1b3) j+(a1b2−a2b1)k

� Example 1.20 Let a =< 1,3,2 >, and b =< 2,−1,−1 >. Find a×b �

� Example 1.21 Show that a×a = 0 �

Theorem 1.6.1 The vector a×b is orthogonal to both a and b.

Proof. Exercise �

Figure 1.21: The vector a×b is orthogonal to both a and b with direction determined by the right-hand
rule.

Theorem 1.6.2 Let a and b be vectors in space. Then
‖a×b‖= ‖a‖‖b‖sinθ

where θ is the angle between a and b and 0≤ θ ≤ π

� Example 1.22 Let a = 2 i+3 j and b = 2 j+ k. Find a unit vector n that is orthogonal to both
a and b. �

Solution: A vector that is orthogonal to both a and b is

a×b =

∣∣∣∣∣∣
i j k
2 3 0
0 2 1

∣∣∣∣∣∣= 3i−2 j+4k

The length of a×b is

‖a×b‖=
√

32 +(−2)2 +42 =
√

29
Therefore, a unit vector that is orthogonal to both a and b is

n =
a×b
‖a×b‖

=
3√
29

i− 2√
29

j+
4√
29

k

Two nonzero vectors a and b are parallel if and only if a×b = 0

1.6.1 Finding the Area of a parallelogram
Consider the parallelogram determined by the vectors a and b shown in Figure 1.22a. The altitude of
the parallelogram is ‖b‖sinθ and the length of its base is ‖a‖, so its area is
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1.6 The Cross Product 15

A = ‖a‖‖b‖sinθ = ‖a×b‖
Thus, the length of the cross product a×b and the area of the parallelogram determined by a and b
have the same numerical value. (See Figure 1.22b.)

Figure 1.22:

R The area of the triangle determined by a and b is
1
2

a×b

� Example 1.23 Find the area of the triangle with vertices P(3,−3,0), Q(1,2,2), and R(1,−2,5).
�

Solution: The area of 4PQR is half the area of the parallelogram determined by the vectors−→
PQ and

−→
PR. Now

−→
PQ =<−2,5,2 > and

−→
PR =<−2,1,5 > so−→

PQ×−→PR = 23 i+6 j+8k
Therefore, the area of the parallelogram is

‖−→PQ×−→PR‖=
√

232 +62 +82 =
√

629≈ 25.1

so the area of the required triangle is
1
2

√
629 or approximately 12.5.

Exercise 1.2 Let a = 3 i+2 j−6k and b = i−2 j+2k. Find the area of the triangle formed by
the vectors a, b and a−b. Ans 2

√
17 square units. �

Properties of the Cross Product
If a,b, and c are vectors and c is a scalar, then

1. a×b =−b×a
2. a× (b+ c) = a×b+a× c
3. (a+b)× c = a× c+b× c
4. c(a×b) = (ca)×b = a× (cb)

5. a×0 = 0×a = 0
6. a×a = 0
7. a.(b× c) = (a×b).c
8. a× (b× c) = (a.c)b− (a.b)c

The Scalar Triple Product
If a,b, and c are vectors in three-dimensional space. The dot product of a and b×c, a.(b×c), is called
the scalar triple product. If we write a= a1 i+a2 j+a3 k, b= b1 i+b2 j+b3 k and c= c1 i+c2 j+c3 k,
then by direct computation,

a.(b× c) =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
The geometric significance of the scalar triple product can be seen by examining the parallelepiped
determined by the vectors a,b, and c. (See Figure 1.23.) The base of the parallelepiped is a paral-
lelogram with adjacent sides determined by b, and c with area ‖b, and c‖. If θ is the angle between
a and b× c, then the height of the parallelepiped is given by h = ‖a‖|cosθ |. Therefore, the volume
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16 VECTORS

of the parallelepiped is

V = ‖b× c‖‖a‖cosθ | (area of base . height)

= |a.(b× c)|

Figure 1.23: The volume V of the parallelepiped is equal to |a.(b× c)|

� Example 1.24 Find the volume of the parallelepiped with three adjacent edges formed by the
vectors a = i+2 j+3k, b = 4 i+5 j+6k and c = 7 i+8 j �

Solution: The volume of the parallelepiped is

V = |a.(b× c)|=

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 0

∣∣∣∣∣∣= |1(0−48)−2(0−42)+3(32−35)|= 27

Test for Coplanar Vectors
The vector a,b, and c are coplanar if and only if a.(b× c) = 0

� Example 1.25 Show that the vectors a =< 1,4,−7 >,b =< 2,−1,4 >, and c =< 0,−9,18 >
are coplanar. �

Solution:

a.(b× c) =

∣∣∣∣∣∣
1 4 −7
2 −1 4
0 −9 18

∣∣∣∣∣∣= |1(−1(18)− (−9)4)−4(2(18)−0)+−7(2(−9)−0)|= 0

Torque
The idea of a cross product occurs often in physics. In particular, we consider a force F acting on a
rigid body at a point given by a position vector r . (For instance, if we tighten a bolt by applying a
force to a wrench as in Figure 1.24, we produce a turning effect.) The torque (relative to the origin) is
defined to be the cross product of the position and force vectors

τ = r×F
and measures the tendency of the body to rotate about the origin. The direction of the torque vector
indicates the axis of rotation. According to Theorem 1.6.2, the magnitude of the torque vector is

Figure 1.24:
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1.7 Lines and Planes in Space 17

‖τ‖= ‖r×F‖= ‖r‖‖F‖sinθ

where θ is the angle between the position and force vectors. Observe that the only component of F
that can cause a rotation is the one perpendicular to r, that is, ‖F‖sinθ . The magnitude of the torque
is equal to the area of the parallelogram determined by r and F.

� Example 1.26 A bolt is tightened by applying a 40-N force to a 0.25-m wrench as shown in
Figure 1.25. Find the magnitude of the torque about the center of the bolt. �

Solution:

The magnitude of the torque vector is

τ = r×F
= (0.25)(40)sin75o = 10sin75o

If the bolt is right-threaded, then the torque vector
itself is

τ = ‖τ‖n
where n is a unit vector directed down into the

page.

Figure 1.25:

Exercise 1.3
1. Find the area of a triangle whose vertices are A = (1,−1,0), B = (2,1,−1), and C =

(−1,1,2)
2. Find the area of a parallelogram having diagonals −→a = 3 i+ j−2k and

−→
b = i−3 j+4k.

3. Find the volume of the parallelepiped with edges −→u = i+ k, −→v = 2 i+ j+4k and j+ k.
4. Find a unit vector perpendicular to the plane of P(1,−1,0),Q(2,1,−1) and R(−1,1,2).
5. Show that the vectors a =< 1,5,−2 >,b =< 3,−1,0 >, and c =< 5,9,−4 > are coplanar.

�

1.7 Lines and Planes in Space

Definition 1.7.1 A vector v =< a, b, c > is said to be parallel to a line L if v is parallel to
−→
P0P for

any two points p0 and p1 on L.

A line L in R3 is determined by a given point p0(x0,y0,z0) on L and a parallel vector v =< a, b, c >
(directional vector) to L.

1.7.1 Equation of a line in space
Suppose that the line L passes through the point P0(x0,y0,z0) and has the same direction as the vector
v =< a, b, c >.
Let P(x,y,z) be any point on L. Then the vector

−→
P0P is parallel to v. But two vectors are parallel if and

only if one is a scalar multiple of the other. Therefore, there exists some number t , called a parameter,
such that −→

P0P = tv
or since,

−→
P0P =< x− x0, y− y0, z− z0 >= t < a, b, c >=< ta, tb, tc > we have

< x− x0, y− y0, z− z0 >
Equating the corresponding components of the two vectors then yields

x− x0 = ta, y− y0 = tb, z− z0 = tc
Solving these equations for x,y, and z , respectively, gives the following standard parametric equations
of the line L.
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18 VECTORS

Definition 1.7.2 — Parametric Equations of a Line. The parametric equations of the line passing
through the point P0(x0,y0,z0) and parallel to the vector v =< a, b, c > are

< x = x0 + ta, y = y0 + tb, z = z0 + tc >

� Example 1.27 Find parametric equations for the line passing through the point P0(2,1,3) and
parallel to the vector v =< 1,2,2 >. �

Solution: x =−2+ t, y = 1+2t, and z = 3−2t

Definition 1.7.3 — Symmetric Equations of a Line. The symmetric equations of the line L
passing through the point P0(x0,y0,z0) and parallel to the vector

x− x0

a
=

y− y0

b
=

z− z0

c

R Suppose a = 0 and both b and c are not equal to zero, then the parametric equations of the line
take the form

x = x0, y = y0 + tb, z = z0 + tc
and the line lies in the plane x = x0 (parallel to the yz -plane). Solving the second and third
equations for t leads to

x = x0,
y− y0

b
=

z− z0

c

which are the symmetric equations of the line.

� Example 1.28 .
(a) Find parametric equations and symmetric equations for the line L passing through the

points P(−3,3,−2) and Q(2,−1,4) .
(b) At what point does L intersect the xy -plane?

�

Solution:
(a) The direction of L is the same as that of the vector

−→
PQ =< 5,−4,6 >. Since L passes

through P(−3,3,−2), the parametric equations of the line is
x =−3+5t, y = 3−4t, and z =−2+6t

The symmetric equations for L is:
x+3

5
=

y−3
−4

=
z+2

6
(b) At the point where the line intersects the xy-plane, we have z = 0. So setting z = 0 in

the third parametric equation, we obtain t =
1
3

. Substituting this value of t into the other

parametric equations gives the required point as
(
−4

3
,
5
3
,0
)

.

� Example 1.29 Find the parametric equations of the line that pass through the point (−1,3,−2)
and is perpendicular to the vectors ~A = 3 i+4 j+ k and ~B = i+2 j �

Solution: Since the line is perpendicular to the vectors ~A and ~B, it is parallel to the vector product of
~A and ~B. Since

A×B =

∣∣∣∣∣∣
i j k
3 4 1
1 2 0

∣∣∣∣∣∣=−2 i+ j+2k

it follows that the parametric equations of the line are
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1.7 Lines and Planes in Space 19

x =−1−2t, y = 3+ t, z =−2+2t

Definition 1.7.4 Let l1 and l2 be two lines in R3, with parallel vectors a and b, respectively, and
let θ be the angle between a and b.

(a) The lines l1 and l2 are parallel whenever a and b are parallel.
(b) If l1 and l2 intersect, then

i. the angle between l1 and l2 is θ and
ii. the lines l1 and l2 are orthogonal whenever a and b are orthogonal.

� Example 1.30 Let L1 be the line with parametric equations
x = 1+2t, y = 2−3t, and z = 2+ t

and L2 be the line with parametric equations
x = 3−4t, y = 1+4t, and z =−3+4t

(a) Show that the lines L1 and L2 are not parallel to each other.
(b) Do the lines L1 and L2 intersect? If so, find their point of intersection.

�

Solution:
(a) L1 has the same direction as the vector ~v1 =< 2,−3,1 >. Similarly, L2 has direction given

by the vector ~v2 =<−4,4,4 >= 4 <−1,1,1 >. Since ~v1 is not a scalar multiple of ~v2,
the vectors are not parallel, so L1 and L2 are not parallel as well.

(b) Suppose that L1 and L2 intersect at the point P0(x0,y0,z0) . Then there must exist parameter
values t1 and t2 such that

x0 = 1+2t1, y0 = 2−3t1, and z0 = 2+ t1
and

x0 = 3−4t2, y0 = 1+4t2, and z0 =−3+4t2
This leads to the system of three linear equations

1+2t1 = 3−4t2
2−3t1 = 1+4t2
2+ t1 = −3+4t2

Adding the first two equations gives t1 =−1. Substituting this value of t1 into either the
first or the second equation then gives t2 = 1. Finally, substituting these values of t1 and t2
into the third equation gives 2−1 =−3+4(1) = 1 , which shows that the third equation
is also satisfied by these values. We conclude that L1 and L2 do indeed intersect at a point.
To find the point of intersection, substitute t1 =−1 into the parametric equations defining
L1 , or, equivalently substitute t2 = 1 into the parametric equations defining L2. In both
cases we find that x0 =−1,y0 = 5, and z0 = 1 , so the point of intersection is (−1,5,1) .

Definition 1.7.5 Two lines in space are said to be skew if they do not intersect and are not parallel.

� Example 1.31 As two planes fly by each other, their flight paths are given by the straight lines
L1 : x = 1− t, y =−2−3t, and z = 4+ t

and
x = 2−2t, y =−4+3t, and z = 1+4t

Show that the lines are skew and, therefore, that there is no danger of the planes colliding. �

Solution: The directions of L1 and L2 are given by the directions of the vectors v1 =<−1,−3,1 >
and v2 =<−2,3,4 >, respectively. Since one vector is not a scalar multiple of the other, the lines L1

and L2 are not parallel. Next, suppose that the two lines do intersect at some point P0(x0,y0,z0) . Then
x0 = 1− t1, y0 =−2−3t1, and z0 = 4+ t1
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and
x0 = 2−2t2, y0 =−4+3t2, and z0 = 1+4t2

for some t1 and t2. Equating the values of x0,y0, and z0 then gives

1− t1 = 2−2t2
−2−3t1 = −4+3t2

4+ t1 = 1+4t2

Solving the first two equations for t1 and t2 yields t1 =
1
9

and t2 =
5
9

substituting these values of t1

and t2 into the third equation gives
37
9

=
29
9

a contradiction. This shows that there are no values of
t1 and t2 that satisfy the three equations simultaneously. Thus, L1 and L2 do not intersect. We have
shown that L1 and L2 are skew lines, so there is no possibility of the planes colliding.

Distance from a point to a Line
Let d represent the distance from the point Q to the line through the points P and R. We have

D = ‖−→PQ‖sinθ

where θ is the angle between
−→
PQ and

−→
PR. Thus,

‖−→PQ×−→PR‖= ‖−→PQ||‖−→PR‖sinθ = ‖−→PR‖(D)
Solving this for D, we get

D =
‖−→PQ×−→PR‖
‖−→PR‖

Figure 1.26:

� Example 1.32 Find the distance from the point P(1,−2,3) to the line with parametric equation
x = 3+ t, y =−1−2t, z = 4+ t. �

Solution: Choose any point from the line, say, Q(3,−1,4). Then
−→
PQ =< 2,1,1 > and the direction

vector is v =< 1,−2,1 >, hence

−→
PQ×v =

∣∣∣∣∣∣
i j k
2 1 1
1 −2 1

∣∣∣∣∣∣= 3 i− j−5k. Thus, the distance is

D =
‖−→PQ×v‖
‖v‖

=

√
32 +(−1)2 +(−5)2√

12 +(−2)2 +12
=

√
35√
6

� Example 1.33 Find the distance D between the two parallel lines L1 and L−2 where

L1 :
x−1

2
=

y+1
−2

=
z−2

1
, L2 : x = 2+ t,y =−t,z = 3+

1
2

t �

Solution: P = (1,−1,2) and Q = (2,0,3) =⇒ −→PQ =< 2,0,3 > and v =< 2,−2,1 >. Thus

D =
‖−→PQ×v‖
‖v‖

=

√
26
3
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1.7.2 Equations of Planes
A plane in space is uniquely determined by specifying a point P0(x0,y0,z0) lying in the plane and a
vector n =< a,b,c > that is normal (perpendicular) to it.
To find an equation of the plane, let P(x,y,z) be any point in the plane. Then the vector

−→
P0P must

be orthogonal to n. But two vectors are orthogonal if and only if their dot product is equal to zero.
Therefore, we must have

n.−→P0P = 0
Since

−→
P0P =< x− x0, y− y0, z− z0 >, we have

< a,b,c > . < x− x0, y− y0, z− z0 >= 0

=⇒ a(x− x0)+b(y− y0)+ c(z− z0) = 0

Figure 1.27:

Definition 1.7.6 The standard form of the equation of a plane containing the point P0(x0,y0,z0)
and having the normal vector n =< a,b,c > is

a(x− x0)+b(y− y0)+ c(z− z0) = 0

� Example 1.34 Find an equation of the plane containing the point P0(1,2,3) and having a normal
vector, < 4,5,6 > and sketch the plane. �

Solution: The equation of the plane is
a(x−x0)+b(y−y0)+c(z−z0)= 0 =⇒ 4(x−1)+5(y−2)+6(z−3)= 0
=⇒ 4x+5y+6z = 32

Figure 1.28: The plane through (8,0,0),
(

0,
32
5
,0
)
,

(
0,0,

16
3

)
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� Example 1.35 Find an equation of the plane that passes through the points P(1,3,2), Q(3,−1,6)
and R(5,2,0). �

Solution: The vectors
−→
PQ =< 2,−4,4 > and

−→
PR =< 4,−1,−2 > lie in the plane, so the vector

‖−→PQ×−→PR‖ is normal to the plane. Denoting this vector by n, we have

n = ‖−→PQ×−→PR = ‖

∣∣∣∣∣∣
i j k
2 −4 4
4 −1 −2

∣∣∣∣∣∣= 12 i+20 j+14k

Hence, using the point P(1,3,2) in the plane (any of the other two points will also do) and the normal
vector n just found, with a = 12,b = 20,c = 14,x0 = 1,y0 = 3, and z0 = 2, we obtain the equation of
the desired plane,

a(x−x0)+b(y−y0)+c(z− z0) = 0 =⇒ 12(x−1)+20(y−3)+14(z−2) = 0
=⇒ 12x+20y+14z = 100 =⇒ 6x+10y+7z = 50

Parallel and Orthogonal Planes
Two planes with normal vectors m and n are parallel to each other if m and n are parallel; the planes
are orthogonal if m and n are orthogonal.

� Example 1.36 Find an equation of the plane containing P(2,−1,3) and parallel to the plane
defined by 2x+3y+4z = 6 . �

Solution: The normal vector of the given plane is n =< 2,−3,4 >. Since the required plane is
parallel to the given plane, it also has n as a normal vector. Hence, the equation of the plane is

2(x−2)+(−3)(y− (−1))+4(z−3) = 0 =⇒ 2x−3y+4z = 19

The Angle Between Two Planes

Two distinct planes in space are either parallel to
each other or intersect in a straight line. If they do
intersect, then the angle between the two planes is
defined to be the acute angle between their normal
vectors

Figure 1.29: The angle between two planes is the
angle between their normal vectors.

� Example 1.37 Find the angle between the two planes defined by 3x−y+2z= 1 and 2x+3y−z=
4. �

Solution: The normal vectors of these planes are
n1 =< 3,−1,2 > and n2 =< 2,3,−1 >

Therefore, the angle θ between the planes is given by

cosθ =
n1.n2

‖n1‖‖n2‖
=

1
14

=⇒ θ = cos−1
(

1
14

)
≈ 86o
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� Example 1.38 Find parametric equations for the line of intersection of the planes defined by
3x− y+2z = 1 and 2x+3y− z = 4. �

Solution:

The Distance Between a Point and a Plane
Let π be a plane with normal n and let P1 be a point not on the plane. Then the distance D between P1
and the plane π is given by

D =
|n.−−→P1P0|
‖n‖

where P0 is any point on the plane.

Figure 1.30:

� Example 1.39 Find the distance between the point (−2,1,3) and the plane 2x−3y+ z = 1 . �

Solution: D =
5√
14

Exercise 1.4
1. Find parametric and symmetric equations of the line passing through the point (1,2,−1) and

parallel to the line with parametric equations x =−1+ t,y = 2+2t , and z =−2−3t . At
what points does the line intersect the coordinate planes?

2. Find symmetric equation of a line L containing the point P0(0,1,−1) and perpendicular to
the line L with parametric equation

x = 2+3t, y =−2−2t, z = 4t
3. Find parametric equations of the line that is parallel to the line with equation

x−1
4

=
y+4

5
=

z+1
2

and contains the point of intersection of the lines
L1 : x = 4+ t, y = 5+ t, z =−1+2t
L2 : x = 6+2t, y = 11+4t, z =−+ t

4. Find the equation of a plane containing the point P0(1,−1,2) and having normal n =
1
2

i+2 j− k.

5. Find the equation of a plane containing the point P(1,−1,1),Q(2,3,0) and R(−1,2,−2).
6. Find the distance between the point P1(−4,2,7) and the plane 2x−3y+4z = 1
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